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Figure 1. (A) Given the first time frame color and segmentation image and a text prompt, our model generates the future dynamic 3D
scene. (B) 3D dynamic scenes as pixel-aligned curve/trajectory images, re-purposing an image diffusion model for 4D generation.

Abstract

This paper addresses the challenge of learning semanti-
cally and functionally meaningful 3D motion priors from
real-world videos, in order to enable prediction of future
3D scene motion from a single input image. We propose
a novel pixel-aligned Motion Map (MoMap) representation
for 3D scene motion, which can be generated from exist-
ing generative image models to facilitate efficient and effec-
tive motion prediction. To learn meaningful distributions
over motion, we create a large-scale database of MoMaps
from over 50,000 real videos and train a diffusion model on
these representations. Our motion generation not only syn-
thesizes trajectories in 3D but also suggests a new pipeline
for 2D video synthesis: first generate a MoMap, then warp
an image accordingly and complete the warped point-based
renderings. Experimental results demonstrate that our ap-
proach generates plausible and semantically consistent 3D
scene motion.

1. Introduction
Motion is ubiquitous in the visual world. Understanding,
reconstructing, forecasting, and interrogating how objects
and entities move in 3D is an important task for computer
vision and is critical for applications that involve interaction
with physical environments such as augmented reality, au-
tonomous driving, or robotics. Of special interest to us is
motion forecasting, prediction, and generation, as required
by an agent operating in a 3D environment. Despite its im-
portance, there is a lack of approaches that learn 3D gener-
ative motion priors at scale. Existing methods either treat
dynamic scene priors as a 2D video generation problem, fo-
cus on localized object-centric priors from large-scale ob-
ject databases, or handle only very short 3D trajectories in
constrained, small-scale setups.

In this work, we aim to learn semantically and function-
ally meaningful 3D motion priors from real-world videos at
scale, and to use these priors for semantics-aware 3D mo-
tion generation. Recent generative motion methods either
consider 2D motions (e.g., TAPIR [10]) or treat 3D trajec-
tories as sets of very short curves, using PointNet or Trans-
former architectures over them (e.g., GeneralFlow [41],
Track2Act [4]). In contrast, we represent motion in a
video through a set of pixel-aligned 3D motion snippets we
call Motion Maps, or MoMaps for short (Fig. 2-A). Each
MoMap is a motion snapshot—a view of the evolving scene
from a fixed camera over a time interval (typically about 50
frames at 3 FPS). The pixels of each MoMap frame encode
(in RGB channels) the XYZ 3D locations of points seen by
that camera in the fixed reference camera coordinate sys-
tem, and the entire MoMap records their spatial evolution
during the time interval captured by the MoMap.

MoMaps facilitate motion learning in two ways. First,
they disentangle camera motion from object motion, reduc-
ing the dimensionality of the problem (only dynamic fore-
ground changes over time). Second, their image-like struc-
ture allows us to build upon diffusion-based image gener-
ative models, such as Stable Diffusion [30, 32], that have
been trained on vast amounts of data—effectively repurpos-
ing them from the task of dense photometric generation to
that of dense position and motion prediction, considering
the full context (both foreground and background) of the
scene. Such repurposing has been used, for example, in
depth prediction by the Marigold method [18]. Addition-
ally, pixel-aligned motion images can directly bind with
powerful 2D segmentation masks such as SAM [19, 31],
enabling us to exploit semantic and instance information
when predicting motion, as motion and semantics are often
strongly correlated.

Prior motion prediction methods typically rely on syn-



thetic data (e.g., Kubric [13]) for training, where the mo-
tions involved do not capture the richness of the physical
world. In contrast, our goal is to learn semantically mean-
ingful real-world motions. Leveraging recent advances in
point tracking and 4D reconstruction, our work presents
a large dataset of 3D motions extracted from real-world
videos and represented as MoMaps. Towards this goal, we
developed a full-stack data pipeline based on video depth
models [7, 16, 36], 3D point tracking [28, 38], video object
segmentation [8, 31] and the MoSca 4D reconstruction sys-
tem [22] to generate 3D tracks and semantic maps for more
than 50K real videos taken from the HOI4D [25] (egocen-
tric) and BRIDGE [35] (robotics) datasets.

Learning a 3D motion prior from large-scale real videos
and building a generative model to predict future 3D tra-
jectories from a single initial frame has proven valuable
for various tasks, including robotics [41] and video model
prompting [12]. As the first work to explore dense 3D
trajectory generation, we showcase another novel down-
stream application: 2D video frame synthesis. Once a
MoMap is generated, we can render the dense 3D trajecto-
ries frame by frame into target cameras, resulting in a partial
video. A lightweight image diffusion model with flatten-
cross-attention can then complete these partially warped 2D
frames, directly synthesizing 2D RGB and semantic videos.
This pipeline highlights a new direction for video genera-
tion that explicitly embeds dynamic 3D bias and 3D mo-
tion consistency into the video formation process. Because
MoMap retains an image-like structure, most techniques
that operate with 2D image diffusion models can be adapted
to MoMaps, offering increased flexibility and opening up
a broad range of future enhancements for 3D motion gen-
eration, for example, more fine-grained motion generation
control through vision-language models.

In summary, our key contributions are: (1) A general
framework for representing 3D motion in dynamic scenes
that can be used for encoding real videos as well as gen-
erating plausible future motions conditioned by scene view
semantics and language. (2) An image-like representation
of motions, MoMaps, that disentangles camera and object
motions and allows the use of large pre-trained image diffu-
sion models for motion prediction. (3) A large database of
MoMaps derived from open-source datasets. (4) An appli-
cation of MoMaps to a new paradigm for generating future
video frames from an image by first generating MoMaps
and then completing renderings of warped point clouds.

2. Related Work
Motion Generation in 2D and 3D The closest related
work to ours typically focuses on predicting 2D or 3D point
trajectories, often within robotics settings [3, 29, 37, 39,
41]: TAPIR [10] uses a U-Net and Fourier encodings of
2D tracks to predict future 2D trajectories from large-scale

real videos. GeneralFlow [41] adopts a PointNeXT ge-
ometric backbone to process a point cloud from the first
video frame, and employs a trajectory-conditioned VAE
to predict future 3D trajectories for queried object points.
Im2Flow2Act [39] leverages Animatediff [15] to predict
2D tracks and visibilities obtained from TAPIR [10], fo-
cusing on object manipulation tasks. Track2Act [3] uses
a transformer-based diffusion model over sets of 2D ob-
ject tracks; it generates these tracks from the first frame
and then estimates a rigid SE(3) transformation to manip-
ulate the object. Similarly, ATM [37] learns policies on
top of a comparable transformer-based diffusion model for
2D track generation. In a concurrent effort, ARM4R [29]
pre-trains a causal transformer to predict future 3D tracks
(at a coarser resolution in an egocentric coordinate system)
on EPIC-Kitchens, later fine-tuning on robot joint trajecto-
ries for policy learning. Zhang et al. [43] address action-
conditioned 3D future prediction for specific non-rigid ob-
jects reconstructed from visual data. In contrast to these
works, our model focuses on long-term, dense, and camera-
disentangled 3D motion generation. It also exploits priors
from pre-trained image diffusion models, extending beyond
the robotics domain and offering a more general-purpose
solution.

Video Generation The field of video generation has ad-
vanced rapidly with models such as SORA [26], Veo [33],
CogVideo [40], and COSMOS [1], etc., which primarily
capture priors over pixel sequences across multiple frames.
Their approaches often rely on diffusion-based methods ap-
plied to stacks of frames [6, 11, 23, 27] or autoregres-
sive models that predict future frames [9, 21, 24]. Some
works [20, 34] first generate future 2D video frames and
then extract 3D motion for downstream tasks such as object
manipulation. However, in all these methods, motion pri-
ors are implicitly learned through pixel-level color changes
rather than explicit 3D trajectories. By contrast, our ap-
proach learns a prior directly on dense 3D tracks, which
reside on a simpler and smoother manifold compared to
pixel-space motion representations. Additionally, recent
works [5, 12, 14] demonstrate that 3D tracks reconstructed
from reference videos or obtained via user prompts can im-
prove controllability in video generation. Yet these meth-
ods still rely on reconstructing 3D motion from existing se-
quences, whereas we focus on generating new 3D motions
outright.

4D Reconstruction Reconstructing real-world, semanti-
cally meaningful 3D motion from video is a key step in
learning 3D motion priors. Modern vision foundation mod-
els such as video depth estimators [7, 16, 36], 2D/3D point
trackers [10, 17, 28, 38], and the induced 4D reconstruc-
tion systems [2, 22, 36, 42] play a crucial role in this pro-



Figure 2. Motion Maps: (A) Dynamic 3D scenes can be represented as one or more Motion Maps – curve/trajectory images. (B) We
develop a full-stack data pipeline to recover a large dataset of MoMaps from many real videos.

cess. They enable camera pose estimation, geometry re-
construction, and the establishment of dense 3D correspon-
dences, which collectively encode the 3D motion present in
a scene. These recent advances in 4D reconstruction serve
as the foundation for constructing large-scale databases, fa-
cilitating the learning of predictive and generative motion
priors.

3. Method
3.1. Motion Map Representation
The first challenge is to represent real-world dynamic 3D
scenes in a way that neural networks can easily output
or predict. It is crucial to capture motion in 3D space
rather than in 2D. Most prior methods model motion as 2D
tracks—either for reconstruction tasks (e.g., BootsTAPIR)
or for generating 2D tracks (e.g., TAPIR [10], ATM [37],
and Track2Act [3]). However, 2D tracks require the model
to handle complexities like occlusion. Therefore, we aim
to represent the dynamic scene directly as 3D trajecto-
ries. A prior method, General-Flow [41], attempts to model
individual 3D trajectories as a set of polylines, using a
PointNet-like structure to build a VAE that generates short-
term 3D trajectories. However, this unstructured set rep-
resentation cannot handle dense predictions for every pixel
and has limited network capacity. Inspired by recent work
repurposing image diffusion models for depth prediction
(e.g., Marigold), we propose a novel scene representation,
called Motion Maps, that is pixel-aligned and can be pro-
duced by a repurposed image diffusion model. As shown
in Fig. 2(A), a Motion Map (MoMap) is an image of 3D
trajectories/curves, or intuitively, is a list of XYZ position
maps aligned onto the single-view reference image. Given
a reference time (e.g., t = 1), we store the 3D trajectory of
each pixel observed at this reference time in the correspond-
ing pixel location. All 3D locations are defined with respect
to the fixed reference frame at this time, which separates
the egocentric (camera) motion from scene object motion.
Other ways to see it are that MoMap forms a “3D trajectory
image” of all pixels anchored at the reference time; or that

MoMap is an XYZ recoloring across time of the same ref-
erence XYZ point map. The MoMap representation offers
several advantages:
• Pixel-aligned: MoMap shares the same underlying struc-

ture as a standard image, making it straightforward to
generate using large 2D models and allowing us to lever-
age pretrained image priors.

• Dense: Unlike a set of sparse trajectories, MoMap is
dense and stores information for every pixel at the ref-
erence time, thus capturing both background and fore-
ground elements critical for understanding motion.

• Smooth and Compressible: Because MoMap stores 3D
trajectories, which are often smooth and low-rank, it can
be further compressed into compact latent maps.

• Camera Motion Disentanglement: By “freezing” the
reference frame, MoMap isolates only the meaningful
(foreground) motion, removing the camera’s egocentric
motion.

Note that one MoMap only captures the content of pix-
els observed at the reference time, a more complete dy-
namic 3D scene can be represented by the union of mul-
tiple MoMaps anchored at different reference frames with
camera poses. This paper only studies the generation of one
MoMap and leaves the complete multi-MoMap joint gener-
ation as future work (Sec. 5).

3.2. MoMap Database from Real Videos
A non-trivial question arises: where do we learn mean-
ingful motion priors? Many previous works rely on syn-
thetic data (e.g., Kubric and PointOdyssey) to train 2D/3D
tracking models that reconstruct trajectories from real ob-
servations, or they use manually/semi-automatically labeled
small datasets (e.g., General-Flow) to generate short 3D tra-
jectories. However, synthetic data often contains random,
semantically/functionally meaningless motion that is only
suitable for low-level vision tasks such as tracking or flow,
while manual or semi-automatic labeling does not scale
well to large video datasets. Instead, we leverage recent
advances in 4D reconstruction (MoSca [22]) to reconstruct
many real-world 4D scenes, and then convert them into our



Figure 3. Method Overview: (A) A MoMap can be compressed to compact latent via initializing and finetuning a Stable-Diffusion VAE.
(B) Given a starting frame and language condition, MoMap can be generated by finetuning the SD UNet.

MoMap representation.

Specifically, as shown in Fig. 2(B), the data preparation
stage processes all frames of a raw 2D real video with sev-
eral steps:

1. We first apply an off-the-shelf video depth model,
DepthCrafter, to infer the depth of each frame.

2. We then query a 3D tracker (SpaTracker) densely on ev-
ery pixel of a target reference time frame (randomly sam-
pled for each video) to build the corresponding MoMap.

3. For videos captured by a moving camera, we run a
tracklet-based bundle adjustment to solve for camera
poses.

4. Because no current 3D tracker can reliably predict 3D
locations under occlusions, we must run an optimization
procedure to address occluded intervals in each 3D tra-
jectory. We adapt the geometric optimization stage from
MoSca [22] to optimize the dense foreground 3D trajec-
tories.

5. Finally, we fill in the MoMaps at the reference time using
these optimized dense 3D trajectories.

6. In addition to this geometric reconstruction process, we
also apply a VOS model (DEVA [8]) for dense instance-
level video object segmentation, allowing us to incorpo-
rate semantic information into the later 3D motion gen-
eration.

We applied this data processing pipeline to 3K HOI4D [25]
videos (human-object, egocentric camera) and 60K
BRIDGE [35] videos (robotics, static camera) as shown in
Fig. 2(B).

3.3. MoMap Generation
3.3.1. Task Definition
Given a large database of MoMaps, we aim to learn a prior
for 3D motions. As shown in in Fig. 1(A), the task is as
follows: given a single RGB image (the first frame) and
optionally a text prompt, the model should generate the 3D
dense motion of every pixel in that frame, from the input
time step into the future time steps.

We also aim to leverage semantic information from in-
stance segmentation, since points belonging to the same in-
stance typically share a similar motion pattern. Addition-
ally, we assume access to a reliable monocular depth model
so that the system does not need to learn 2D-to-3D lifting
from scratch. Consequently, the first-frame RGB image can
be augmented with an instance segmentation map and an
XYZ map derived from the monocular depth model.

3.3.2. MoMap Compression
Thanks to the pixel-aligned property of the MoMap repre-
sentation, our approach is to exploit existing 2D image dif-
fusion models (e.g., StableDiffusion) to generate MoMaps.
However, these image models generally operate on inputs
and outputs of shape H×W×3, while MoMaps have shape
H × W × T × 3, where T is the number of frames. No-
tably, T is typically large (e.g., 50 or 60) in our setting, as
we want to generate semantically and functionally meaning-
ful long-term 3D motions. The key question, therefore, is
how to adapt these powerful 2D diffusion models to gen-
erate MoMaps. We found that it is necessary to encode
the H ×W × 3 MoMaps into compact latent feature maps
of shape HL × WL × CL. The underlying insight is that



real-world motion is often smooth and low-rank, making it
compressible in both space and time. Concretely, we set
HL = H/8 and WL = W/8 for the spatial dimensions,
and compress the temporal dimension T = 50 (times the
3 spatial channels) into CL = 32 channels. As illustrated
in Fig. 3, we increase the input, output, and latent dimen-
sions of the 2D VAE. By carefully initializing the network
at the input, intermediate, and output layers, we can effec-
tively transfer weights from a pre-trained VAE, and then
finetune with MoMap data. This design allows the architec-
ture to function similarly to the standard 3-channel RGB (as
averaging across time of XYZs), leveraging the pre-trained
knowledge acquired from large-scale image datasets.

3.3.3. MoMap Diffusion
We exploit the pixel-aligned nature of MoMap by repurpos-
ing a large pre-trained image generation model (e.g., Stable
Diffusion) to generate these “trajectory images”. Once the
MoMap compression networks are trained, we can convert
the ground-truth MoMap into a compact latent representa-
tion and use the U-Net to perform generation. Concretely,
as shown in Fig. 3(B), we modify the input and output lay-
ers of a pre-trained U-Net from Stable Diffusion while ini-
tializing the remaining layers with weights from SD. The
input conditions—the first-frame RGB image, the instance
segmentation image (encoded as random RGB colors per
patch), and the first-frame XYZ map—are all encoded by
2D VAE encoders into low-resolution latents, which are
concatenated with noise and fed into the U-Net. Language
prompts are incorporated in exactly the same manner as
in standard Stable Diffusion. Note that such a lightweight
(equivalent to one single image generation) diffusion pro-
cess can efficiently generate long (T = 50) frames in a sin-
gle sampling process, exploiting the pixel aligned nature of
the MoMap representation.

3.4. Application
3.4.1. Video Synthesis
MoMap captures the future 3D motion of every pixel, which
is inherently related to predicting future 2D video frames
(commonly approached as a video generation problem). We
further explore how to transform the 3D MoMap into a com-
plete 2D video, as illustrated in Fig. 4(A). Given a gener-
ated MoMap and target camera intrinsics and extrinsics, we
render the MoMap using 3D Gaussian Splatting to obtain
a partial 2D RGB and semantic video (top row). This ren-
dering is partial because a single MoMap contains only the
pixels visible in the first frame, resulting in holes (shown
in black). We then finetune another Stable Diffusion single-
image model to complete these partial videos using a simple
cross-view flattening attention module (similar to CAT3D),
ultimately reconstructing the full video (bottom row).

At a high level, this approach explicitly embeds a dy-

Figure 4. Application: (A) 2D video generation via render
MoMap and then complete; (B-1) motion DSL representation. (B-
2) Infer motion DSL with VLM for finer generation control.

namic 3D inductive bias into video generation. Unlike most
video models, which focus on memorizing pixel-level color
changes and tend to be computationally heavy, we directly
learn how objects move in 3D and form the images using a
dedicated renderer (Gaussian Splatting). A separate diffu-
sion model subsequently corrects artifacts and fills in miss-
ing regions. As a result, the video generation is handled by
two relatively lightweight image models.

3.4.2. VLM Control
Real-world motion often spans long time periods, making
effective conditioning challenging. Relying solely on global
text conditions (as in Stable Diffusion) may be insufficient
and would require highly accurate text annotations in the
dataset (Fig. 6-B). Consequently, there is a need for alterna-
tive or augmented conditioning strategies to achieve robust
and contextually aligned control over motion generation.
We propose leveraging Vision-Language Models (VLMs),
which possess strong semantic understanding and common-
sense reasoning. To connect high-level VLM outputs with
low-level MoMap diffusion, we introduce a domain-specific
language (DSL), illustrated in Fig. 4-(B-1). The centroid
of each semantic patch is quantized into nine directional
flags (e.g., “left”, “right”, “stay”) and converted into a struc-
tured language format (e.g., JSON) for each patch. Alterna-
tively, these patch-level directional flags can be grounded



at the pixel level, forming 2D conditions. Thus, this DSL
seamlessly combines both a structured language format and
pixel-grounded information.

Rather than inserting text prompts directly into the
MoMap diffusion network, we remove the text condition
and instead rely on pixel-based DSL (2D pixel conditions)
to guide generation. During inference, we let a VLM
(e.g., Gemini) generate the DSL from the input’s first frame
as well as the global text prompt via in-context learn-
ing, using a few ground-truth examples from the training
videos (Fig. 4-B-2). In this setup, VLM’s strong reason-
ing and language capabilities allow it to interpret flexible
prompts—even those substantially different from the train-
ing dataset—and determine what moves and how. The DSL
it produces is then converted into pixel-form conditions for
the diffusion model’s U-Net (trained without global text
conditioning) as an input condition, enabling fine-grained,
semantically informed control over 3D motion generation.

4. Experiment
4.1. Baselines Comparison
We compare our 3D motion generation approach with sev-
eral baselines that also generate 3D trajectories. The closest
related work is GeneralFlow [41], which produces short 3D
trajectories (typically T = 4 frames) from an input-colored
point cloud. We train three variants of the G-Flow-large
model on our BRIDGE robot dataset:
• GFlow-Original: Uses the same configuration as the

original GeneralFlow [41] but extends the trajectory pre-
diction length from 4 to 50.

• GFlow-Rollout: Keeps the original configuration with-
out changing the prediction length. To achieve T=50, it
performs iterative “roll-outs” by taking the last generated
frame as the new first-frame input for each subsequent
generation round.

• GFlow-Extend: An upgraded version of GeneralFlow
that increases the querying chunk size from 128 to 20,000
and the scene point cloud samples from 4,096 to 10,000.
The network also takes semantic colors as additional
point features. Furthermore, the trajectory VAE latent di-
mension is increased from 16 to 32, and more layers are
added to boost overall capacity.

We also built another baseline, MoMap-VAE, which uses
the same overall architecture but omits the diffusion U-Net
in the middle. Instead, it is trained as a conditional VAE
that directly generates the MoMap.

Generating a long motion (T=50) from a single start-
ing frame is highly ill-posed, so the most direct and ar-
guably maybe the most accurate way to assess performance
is via side-by-side qualitative comparisons of the generated
3D motions as in Fig. 5. From the comparisons, we ob-
serve: GFlow-Original: Tends to produce diverging tra-
jectories in long-term predictions. Objects often lose their

original rigid shape at later time steps. GFlow-Rollout:
Performs poorly in this setting because it can only gener-
ate very short time spans (T=4) and must roll out repeat-
edly to reach T=50. This causes even more severe diver-
gence over time. GFlow-Extend: Benefiting from a larger
query chunk size and more network capacity, it generates
smoother and more consistent motion. However, due to lim-
ited semantic and contextual understanding of Point-NeXT,
it misidentifies which objects should move. For instance, in
the second-to-last row, it moves two blocks when only one
should be moving. MoMap-VAE vs. Ours (MoMap Dif-
fusion): While MoMap-VAE can produce reasonable long-
term motions, our diffusion-based approach generates more
natural-looking hand and object motions, reflecting a richer
learned prior over realistic 3D trajectories.

4.2. Metrics and Quantitative Comparison
Evaluating the generated results quantitatively is challeng-
ing because the problem is highly ill-posed and many plau-
sible generations can be consistent with the provided ini-
tial conditions. For each starting frame, there is only
one ground-truth observed trajectory, but many plausible
solutions exist. We follow the previous work (Gener-
alFlow [41]) which generates N = 10 samples per input,
but computing the metric by comparing the closest of the
generated samples with the ground truth. Beside detailed
reconstruction erros, we introduce several additional coarse
metrics that capture various aspects of the motion:

1. Foreground Mask IoU (fg mask iou ↑): Measures
whether the generated motion correctly identifies the
moving regions. A “moving mas” is constructed by iden-
tifying pixels with significant 3D trajectory displace-
ment. The Intersection over Union (IoU) between the
ground truth and generated moving masks is then com-
puted.

2. Foreground Absolute Trajectory Error under Dynamic
Time Warping (ate dtw↓): Computes ATE (reported
in GeneralFlow) after optimizing temporal alignment
with Dynamic-Time-Warping (DTW), capturing scenar-
ios where the timing of motions differs but the overall
trajectory is correct.

3. Foreground Curve Distance-Matrix Signature Error
(D sig↓): Creates a translation and rotation-invariant
signature by computing a T x T distance matrix between
positions at any two-time steps. The difference between
ground truth and generated matrices measures SE(3) in-
variant curve similarity.

4. Foreground Local Distance Difference (lo-
cal dist diff↓): Evaluates the preservation of local
structure by computing distances between K-nearest
neighbors in the ground truth and generated 3D trajecto-
ries. Measures whether the generated motion preserves
local rigidity and avoids collapsing into noise.



Figure 5. Qualitative Results: (A) comparison with baselines. (B) More generation results. (C) Diverse generations from the same
condition with different random seeds.

5. Foreground Patches Nearest Patch Accuracy
(cross patch nearest acc↓) tracks which patch is
closest (centroid-wise) to each moving foreground
patch at each time step. Accuracy measures whether
the generated motion maintains the same nearest-patch
relationships as the ground truth.

6. Foreground dT Quantized Direction Accuracy
(quantize acc dT↑): Coarsely evaluates motion
direction by quantizing a 3D trajectory over a delta
time interval (dT) into 9 directions (left-stay-right,
forward-stay-backward, up-stay-down). Measures the
accuracy between ground truth and generated motion
directions for each pixel in the foreground mask.

These metrics capture a variety of aspects, ranging from
fine-grained reconstruction errors to coarse object-level mo-
tion directions and proximities, enabling a more compre-
hensive evaluation of 3D trajectories. The metrics of Ours
and the baselines on a small testset are reported in Tab. 1.

We observe that our method outperforms the baselines
in most metrics, especially in quantized directional accu-

racy and the D sig fg↓ metric. From both qualitative and
quantitative findings, we note that our generated trajecto-
ries exhibit stronger semantic coherence and greater internal
consistency, particularly in capturing aggregate motion. In
contrast, GFlow appears to have lower noise in individual
point trajectories (reflected by higher reconstruction met-
rics) but exhibits inconsistent noise across adjacent points
belonging to the same object, leading to visually detectable
“object breakdowns.”

4.3. Application

Video synthesis. We present our video synthesis results in
Fig.6-A, following the approach in Sec.3.4.1, showing that
our lightweight model achieves decent performance.

VLM control. In Fig.6-B, we showcase VLM-controlled
generation, described in Sec.3.4.2. Notably, the VLM-
controlled approach produces more accurate motion than
relying solely on a global text condition, which can fail in
certain scenarios.



Dataset BRIDGE HOI4D

Metric\Method GFlow-Ori. GFlow-Roll. GFlow-Ext. MoMap VAE Ours GFlow-Ori. GFlow-Roll. GFlow-Ext. MoMap VAE Ours

fg mask iou↑ 0.8044 0.5659 0.7597 0.8271 0.8128 0.0667 0.0000 0.0667 0.3400 0.4492
ate dtw↓ 0.0747 0.1164 0.0812 0.0751 0.0689 1.6119 0.1241 0.7281 0.1265 0.1112
D sig↓ 0.0536 0.0873 0.0591 0.0538 0.0463 1.3888 0.1193 0.2922 0.1030 0.0886

local dist diff↓ 0.0124 0.0154 0.0073 0.0073 0.0058 0.0154 0.0086 0.0092 0.0094 0.0092
patch nearest acc↑ 0.8387 0.7649 0.8244 0.8398 0.8691 0.6926 0.7631 0.7554 0.7495 0.7923

quantize acc 1↑ 0.6758 0.6271 0.6623 0.6856 0.7212 0.2116 0.6014 0.3279 0.6015 0.6157
quantize acc 4↑ 0.5890 0.4702 0.5568 0.6148 0.6554 0.3653 0.2710 0.3656 0.3000 0.4278

quantize acc 16↑ 0.7294 0.4503 0.7049 0.7293 0.7752 0.4319 0.1347 0.4068 0.3980 0.4610

Table 1. Quantitative comparison on BRIDGE and HOI4D testset.

Figure 6. Application Results: (A) 2D video generation results.
(B) VLM finer control can generate reasonable results even when
global text condition fails.

4.4. Ablation Study
We validate the design of our MoMap diffusion by ablating
various components in its architecture: (1) remove the input
XYZ condition; (2) remove the input semantic image condi-
tion; (3) remove the VAE compression of the MoMaps and
let the UNet work on the original MoMap space instead of
the latent space; (4) train the diffusion from scratch with-
out initialization from stable-diffusion pre-trained weights;
and (5) train both the MoMap VAE and UNet from scratch.
Tab. 2 presents the results of these ablation experiments, il-
lustrating that our full model achieves the best performance.

Metric\Ablation Full no xyz no sem no vae no unet init no unet&vae init

fg mask iou↑ 0.8128 0.7962 0.8079 0.1305 0.7974 0.7450
ate dtw↓ 0.0689 0.0738 0.0689 0.1759 0.0792 0.0992
D sig↓ 0.0463 0.0484 0.0468 0.1082 0.0520 0.0579

local dist diff↓ 0.0058 0.0060 0.0056 0.1348 0.0055 0.0094
patch nearest acc↑ 0.8691 0.8605 0.8659 0.7533 0.8510 0.8306

quantize acc 1↑ 0.7212 0.7142 0.7187 0.1940 0.7085 0.6566
quantize acc 4↑ 0.6554 0.6415 0.6522 0.3977 0.6260 0.5925

quantize acc 16↑ 0.7752 0.7589 0.7719 0.5311 0.7434 0.7267

Table 2. Ablation comparison on BRIDGE dataset.

5. Limitations and Conclusion
In this paper, we explored a new problem: learning to gen-
erate future 3D motion for an entire scene using large-scale
real-world videos. We introduced an image-like MoMap
representation, which enables the repurposing of estab-
lished 2D image diffusion models for 3D motion genera-
tion. By assembling a large database of MoMaps from real
videos, we demonstrated the feasibility of synthesizing se-
mantically and functionally meaningful 3D scene motion,
also highlighting its potential impact on 2D video synthe-
sis.

Despite these promising results, our work represents an
initial step in the realm of dense 3D motion generation at
scale, and several challenges and directions remain:
1. Multiview MoMap joint generation. This paper pri-

marily focuses on generating a single MoMap anchored
at the first frame, which only partially captures the
scene. A key future direction lies in jointly and consis-
tently generating multiple MoMaps anchored at differ-
ent frames or viewpoints to aggregate a more complete
scene.

2. Enhanced motion control and VLMs. Currently, the
language prompts are integrated similarly to Stable Dif-
fusion, providing limited motion control. Achieving
more fine-grained and semantically meaningful motion
control using advanced vision-language models is a
promising area of future research.

3. Scaling to larger and more diverse data. Our current
datasets, though sizable, are domain-specific (e.g., hand-
object or robotics). Extending these techniques to large-
scale, general-purpose videos presents an important av-
enue for broader impact.
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